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We construct a simple dynamic model of promotion and spinoff formation that 
sheds some light on why the empirical relationships between spinoff formation, 
tenure and performance vary so widely across different settings. A supervisor 
must learn over time about the employee’s aptitude for work at a more senior level 
and decide whether to promote him. The employee balances the benefits of waiting 
for promotion against immediate departure to form a spinoff. By means of a 
number of approximations to the pair of interrelated optimal stopping problems 
that our model gives rise to, we are able to characterize the effects of parameter 
changes on the likelihood and timing of promotion and spinoff formation. 
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1. Introduction 

How does the likelihood of engaging in entrepreneurship change as an individual 
acquires experience at existing organizations? The answer is less intuitive than it 
may, at least at first, seem to be. On the one hand, if employees learn from suc-
cessful employers about how to compete profitably in their industry (e.g., Agar-
wal et al. [2004], Franco and Filson [2006]), one might expect the rate at which 
an individual transitions to entrepreneurship to increase with experience. On the 
other hand, the accumulation of experience at existing organizations can deter 
entrepreneurship in either of two ways. First, experience may raise human capital 
specific to the firm or, more generally, specific to work done in large organiza-
tions. If the employee is able to capture part of this increased value in the form 
of higher wages, the opportunity cost of entrepreneurship rises. Second, tenure 
may indicate an individual’s preference or innate aptitude for continued employ-
ment over entrepreneurship, either at established organizations in general (e.g., 
Sørensen [2007], Elfenbein, Hamilton, and Zenger [2010]),  or at his current place 
of employment in particular (e.g., Jovanovic [1979]).  

As a consequence, it is perhaps unsurprising that evidence on the empirical rela-
tionship between the accumulation of experience and the rate of entrepreneurship 
is mixed. For example, a study of academic scientists found that the rate of tran-
sition to commercial science increased monotonically but non-linearly with expe-
rience, as indicated by publication counts and number of jobs held (Stuart and 
Ding [2006]). A study of MBA graduates indicated a non-monotonic relationship 
between organizational tenure and entrepreneurship that changed direction twice 
over the tenure distribution (Dobrev and Barnett [2005]). Another study, of Da-
nish citizens, found that the rate of transition to entrepreneurship decreased with 
one’s tenure at their current employer (Sørensen [2007]). Last, a study of lawyers 
found a non-monotonic (first increasing and then decreasing) relationship be-
tween tenure and the rate at which lawyers departed their employer to found a 
new firm (Campbell, Ganco, Franco, and Agarwal [2012]).  

Ambiguities about the effect of tenure extend to ambiguities about the effect of 
job performance on entrepreneurship. While high performance on the job may 
reflect high ability that is most effectively rewarded by business formation (Rosen 
[1981]), it also raises the opportunity cost of leaving a firm. On this score, too, 
the empirical evidence is mixed. For example, Evans and Jovanovic [1989] pro-
vide evidence that people leaving a firm on average had performed worse than 
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those who stay; Elfenbein, et al. [2010] and Astebro, Chen and Thompson [2010] 
found that the highest and lowest earners are more likely to enter self-
employment; while Groysberg, Nanda and Prats [2009] found that star financial 
analysts were more likely to leave their employer to engage in entrepreneurship 
even though they were less likely to leave in order to work at another firm.  

In this paper, we construct a simple model intended to shed some light on why 
the relationships between spinoff formation, tenure and performance vary so 
widely across different settings. In our model there are two agents, a Supervisor 
(S) and a Junior (J). S monitors J’s performance and she decides in each period 
whether to promote him. The return to the firm from promoting J depends on 
his innate ability. However, S does not know J’s ability and must learn it over 
time. J also does not know his ability, but we assume that he maintains a dog-
matic belief about it even though his direct interactions with S allow him to ob-
serve S’s belief. If J believes his ability is high enough to make entrepreneurship 
profitable, he has not yet been promoted, and he doesn’t expect to be promoted 
soon, he chooses to form a spinoff. 

Although our model focuses on just one driving force behind employee spinoffs,   
it generates surprisingly diverse comparative statics effects. Consider, for exam-
ple, the effect of greater uncertainty about employee ability. The model, which is 
cast in Bayesian terms, admits greater uncertainty at the time of hiring in the 
form of a noisier prior, and greater uncertainty at any subsequent point in time 
due to noisier signals. We show that noisier priors reduce the likelihood of spinoff 
formation, while noisier signals may work in either direction. As a second exam-
ple, consider the role of overconfidence, measured by the excess of J’s perception 
of his ability over its true value. If one holds perception fixed and raises overcon-
fidence by reducing ability, the probability of spinoff formation unambiguously 
rises; in contrast, if one holds ability fixed while raising J’s perception, the like-
lihood of spinoff formation may rise or fall. Our conclusion is that even narrowly 
cast models of employee entrepreneurship are consistent with empirical findings 
that vary markedly as the context changes.   

2. The Model 

Two employees, S and J, work together at a firm. J is hired as a junior, earns a 
wage w, and produces output v. The firm therefore earns surplus v w-  per pe-
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riod. J is also endowed with his ability for work as a senior employee, q. If J is 
promoted, he produces output q, earns a wage ,pw w>  and produces surplus 

pwq -  for the firm. Promotion is irreversible. At any point in time, J may leave 
to operate his own firm. If he does so, he earns per-period income of q. However, 
creating a firm entails a fixed cost k. Upon hiring J, S knows only that q is a 
random draw from a distribution F0. The realization of q must be learned over 
time by S, who uses information gained from supervising J to decide whether he 
merits promotion. J also does not know his ability but, in contrast to S, he holds 
a dogmatic belief that it is equal to q̂ . 

The timing of moves is as follows. At the beginning of period t, J decides whether 
or not to form a spinoff. If J stays, S obtains a new signal about J's ability, up-
dates her belief and chooses either to promote him or to wait at least another 
period. We assume that S’s current belief is observable to J as a result of their 
interactions.  

2.1 Supervisor’s Problem. At time t, S believes J’s ability is a random draw from 
the distribution ( ),

t
F q  with density ( )

t
f q . In each period, S observes a signal, z, 

that has conditional density ( | ),g z q  so we can define the one-step-ahead Bayes 
map as  

 
1

( | ) ( )
( )

( | ) ( )
t

t

t

g z f
f

g z f d

q q
q

q q q+ =
ò

. (1) 

S must solve a dynamic programming problem in which the only link across pe-
riods is the evolution of beliefs. These types of problems have been analyzed in 
quite general terms by Easley and Kiefer (1988). Equation (1) can be written in 
terms of the prior and posterior distributions,  

 
1

( , )
t t

F b z F+ = , (2) 

where ( , )
t

b z F  is the transition from the prior belief 
t

F  to the posterior belief 
1t

F +  
after observing signal z. Easley and Kiefer (1988) prove that, under quite general 
conditions, ( , )

t
b z F  is a well defined, continuous, and stationary function.  

The subjective expected value to S of having J as a junior employee when her 
belief is 

t
F  is given by the Bellman equation 
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 ( ) {max (1 ( )) ( ( , )) ( | ) ( ),
t t t t

V F v w F V b z F g z dz dFb l q q= - + - ò ò
 

                                                      
( )1

( )
1

p
t

dF wq q
b

üïï- ýï- ïþ
ò , (3) 

where ( )
t

Fl  is S’s subjective probability that J will depart at the beginning of 
the next period. If J departs, we assume the payoff to S is zero.  

Stopping rules are beliefs, F*, that satisfy  

 
* * *(1 ( )) ( ( , )) ( | ) ( )v w F V b z F g z dz dFb l q q- + - =ò ò                                                

                                                  ( )*1
( )

1
pdF wq q

b
-

- ò . (4) 

In general, F* is not uniquely defined by (4). Suppose, for example, that 
2( , )F N q s . While the right hand side (RHS) of (4) is linear in q and hence 

independent of 2,s  the left hand side (LHS) is convex in q and depends jointly 
on the pair 2{ , }.q s  Thus, (4) contains two unknowns and admits an infinite 
number of stopping distributions.1 

2.2 Junior’s Problem. A meaningful stopping problem exists only if J’s dogmatic 
belief about his ability satisfies the inequalities 

 ˆ(1 ) pw k wb q< - - + < , (5) 

so that founding a business is more attractive than wage employment when the 
agent knows he will never be promoted, and immediate promotion is more attrac-
tive than self-employment. Agents who believe their ability is too low to satisfy 
(5) never consider stopping and do nothing more than passively await a promo-
tion decision by S, while agents with perceived ability too large to satisfy (5) 
never join the firm. To avoid tedious discussion of uninteresting cases, we shall 
assume that inequality (5) holds throughout. 

Let 
ˆ

1
( )

t
Fqm -

 denote J’s subjective probability that he will be promoted in period 
t, and let ( )1

,̂
t

W Fq -  be the value to J of not being promoted. The value function 

                                         
1 This does not imply that the problem is not well-behaved. For example, it is easy to show 

that, for any belief F there exists a unique v(F) such that juniors producing v>v(F) are not 
promoted, while those producing v<v(F) are promoted. 
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W depends, inter alia, on both J’s dogmatic belief and S’s evolving belief. How-
ever, given the timing of moves, J makes decisions in each period based on S’s 
belief in the previous period.   

J’s Bellman equation is 

 
( ) ( ){ ˆ

1 1 1
ˆ ˆ ˆ, max (1 ( )) ( , ( , )) ( | )

t t t
W F F w W b z F g z dzqq m b q q- - -= - + ò    

                                    
ˆ

1

ˆ
( ) ,

1 1

p

t

w
F kq q

m
b b-

üïï+ - + ýï- - ïþ
. (6)

 

Stopping rules, **,F  satisfy 

 

ˆ **
**

ˆ **

ˆ( ) ( (1 )) ˆ( , ( , )) ( | )
(1 )(1 ( ))

pF w k
w W b z F g z dz

F

q

q

m q b
b q q

b m
- - -

= -
- - ò . (7) 

Although, like F*, F** is not generally uniquely defined, the optimal policy has 
some straightforward properties. For example, for any belief F there exists a 
( )k F  such that J forms a spinoff if ( ),k k F< and he otherwise remains with the 

firm. 

2.3 Normal Priors and Signals 

It will be unsurprising to readers familiar with Bayesian learning that we can 
make considerable progress if we assume the sequence of beliefs, 

0
{ } ,

t t
F ¥

=  belongs 
to the Normal conjugate family. Therefore, suppose that S’s prior is that q is 
drawn from a Normal distribution with zero mean and variance 2,qs  and that the 
signals are random draws from a Normal distribution with mean q and variance 

2.
z

s  We continue to suppose that J maintains a dogmatic belief that his ability is 
.̂q  Let 

t
z  denote the mean of the t signals observed up to period t. Using stan-

dard formulae [e.g., DeGroot (1970, ch. 9)], S’s posterior belief is Normal with 
mean  

 
2

2 2
,t

t

z

z t

t
q

q

s
q

s s
=

+
 (8) 

and variance  

 
2 2

2

2 2

z
t

z
t

q

q

s s
s

s s
=

+
. (9) 
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Because the variance of beliefs is a deterministic function of time, the pair { , }
t
tq  

is a sufficient statistic for ( ).
t

F q  The two stopping rules can now be written as  

 
*

* * *(1 ( )) ( ( , , )) ( | ) ( )
1

p
t

t t t t t

w
v w V b z t g z dz dF

q
b l q q q q

b

-
- + - =

-ò ò  (10) 

for promotion, and  

 
ˆ **

**
ˆ **

ˆ( (1 )) ( ) ˆ ˆ( , ( , , )) ( | )
(1 )(1 ( ))

p
t t

t

t t

k w
w W b z t g z dz

q

q

q b m q
b q q q

b m q

- - -
= +

- - ò  (11) 

for spinoff formation. In (10) and (11), ( | )g z q  is the density of a Normal random 
variable with mean q and variance 2

;z
s , *

t
q  is the critical value that induces pro-

motion in period t, **
t

q  is the critical value that induces J to form a spinoff in 
period t, and ( , , )

t
b z tq  maps a Normal distribution with mean 

t
q  and variance 

2
t

s , into a Normal distribution with moments
 

  
2 2

1
1 2 2

t z t t
t

z t

zq s s
q

s s
+

+

+
=

+
,    and    

2 2
2

1 2 2

z t
t

z t

s s
s

s s+ =
+

. (12) 

Note that, for S, 
1

[ | ] ,S

t t t
E z q q+ =  so (12) implies that 

1
[ | ] .

t t t
E q q q+ =  This is, of 

course, just the law of iterated expectations. For J we have 
1 1

[ | ] [ ]J

t t t
E z E zq+ +=

.̂q=  When S’s current belief is less favorable than J’s dogmatic belief, J is opti-
mistic that future signals will induce an improvement in S’s belief. 

With this specification for beliefs, we can make the following statement about the 
stopping problems: 

PROPOSITION 1. (A) As long as ( )
t t

l q  does not decline too rapidly when 
t

q  in-
creases, there exists a unique stopping rule, *,

t
q  such that J is promoted 

the first time that *.
t t

q q>  (B) There exists a unique stopping rule, 
** *,

t t
q q<  such that J forms a spinoff the first time that **.

t t
q q<  

PROOF. For part (A), suppose that ( )
t t t

l q l=  is invariant to S’s belief. Then, be-
cause increases in q  affect V only through the possibility that J is promoted in the 
future, the derivative of the left-hand side (LHS) of (10) with respect to q  can no-
where exceed (1 )

t
b l-  times the derivative of the RHS evaluated at the same point. 

At the same time, if S is sufficiently confident that J has low ability (say, as 

t
q  -¥ ), the LHS of (10) exceeds the RHS. These properties are illustrated in Fig-
ure 1, where W depicts the RHS and the curves labeled Vt and Vt+j plot the LHS for 
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two different time periods. Because the option value of waiting declines as the post-
erior variance declines, V shifts down over time. As illustrated, each V intersects W 
once and, does so in such a way that an increase in t is associated with a reduction 

*.
t

q This result is undermined if there are segments of ( )
t t

l q
 
that fall sharply as 

t
q

 increases. In this case, the slope of V may exceed the slope of W, and if such a seg-
ment exists in just the right range, there may be multiple stopping values.  

For part (B), note that the derivative of the LHS of (11) is 

 
ˆ

ˆ ** 2

ˆ( (1 ))
0

(1 )(1 ( ))

p

t

tt t

k w
q

q

mq b

qb m q

¶- - -

¶- -
< , (13) 

which is strictly negative because (i) the probability of promotion in the next period 
is strictly increasing in 

t
q , and (ii) ˆ( (1 ))pw kq b> - -  [see eq. (5)]. Thus the LHS of 

(11) is strictly decreasing in 
t

q , while the RHS is clearly increasing, and there is at 
most one intersection. As 

t
q  -¥ , 

ˆ
( ) 0

t t

qm q  ; then the LHS of (11) approaches 
ˆ( (1 )) / (1 )kq b b- - -  and the RHS approaches / (1 ).w b-  At the other extreme, as 

,
t

q  +¥  
ˆ
( ) 1

t t

qm q  , the LHS approaches ,-¥  and the RHS approaches .+¥  
Hence, there is exactly one intersection (see Figure 2). To see that ** *

t t
q q< , suppose 

not. Then for any belief such that J chooses to form a spinoff, S is also willing to pro-
mote J immediately. But, by (5), J prefers immediate promotion to spinoff formation, 
so he would not form a spinoff.  • 

Figure 3 provides a schematic representation of the two stopping boundaries. 
Learning is a straightforward process in our setting as signals and beliefs do not 
depend on actions. Consequently, 

t
q q  at the rate 

1
2 .t-  Two sample paths are 

drawn: one that converges on a low value of q and leads to J forming a spinoff, 
and another that converges on a high value and leads to J’s promotion. Two oth-
er possibilities are not drawn. In one, promotion is not optimal (because 

pw v wq - < - ) but J is promoted after misleading signals raise 
t

q  above *.
t

q  In 
the other, misleading signals induce J to form a spinoff despite the fact that q is 
large enough to merit promotion. We do not have a complete picture of the two 
stopping boundaries, but we can characterize some of their main properties. 

·  The option value of continuation declines as the precision of beliefs improves, 
so S’s standard for promotion will become less demanding over time. Hence, S’s 
boundary trends downwards. This decline gives the impression that there is pro-
motion for time served, because the requirement for promotion is lower for 
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Figure 2 

t
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t j
q +

*

t
q
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W
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ˆ

1
k

q
b
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-

q
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RHS
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Figure 3 

individuals who have been employed longer.2 Equivalently, there is an appearance 
of fast-tracking because unusually good individuals are on average promoted 
quickly. 

·  Although we have drawn it as monotonically increasing, the trend for **

t
q  is 

ambiguous. On the one hand, S’s belief changes more slowly with the passage of 
time, and this makes J less willing to tolerate an unfavorable belief and remain 
with the firm. On the other hand, S’s boundary is trending downwards, and this 
induces J to tolerate a less favorable belief. As a result, J’s boundary may rise or 
fall. However, we can expect that the distance between the boundaries declines 
over time. Indeed, as ,t  ¥  the boundaries must asymptotically coincide: when 
beliefs become fixed, because S has observed so many signals, J will not tolerate 
any belief that does not result in immediate promotion.  

· In some cases, changes in parameter values have unambiguous effects on the 
stopping boundaries. We shall leave more detailed comparative statics analysis 
until later, and provide just one example here. An increase v has no direct bear-
ing on how attractive spinoff formation is to J. However, it makes promotion less 
attractive to S (shifting *

t
q  up), and this in turn induces J to be less willing to 

                                         
2 This is consistent with the perception among academics that the requirements for early te-
nure are higher than for tenure granted at the regular time. 

t

**

t
q

*

t
q

spinoff

promotion

0
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tolerate an unfavorable belief about his ability. As a result, an increase in v shifts 
both *

t
q  and **

t
q  upwards. These changes make spinoff formation more likely and 

promotion less likely.  

2.4 Approximate Stopping Rules 

In related stopping problems, Jovanovic (1979), Thompson (2008), and Thomp-
son and Chen (2011), have implemented an approximation to the distribution of 
stopping times by fixing critical values to their asymptotic levels. We adopt the 
same strategy here for S’s problem; for J’s problem, we will need to be a little 
more sophisticated.  

We begin with S’s problem. Let * *lim
t t t

q q¥=  for all t, so that S chooses to 
promote J in the first period that .pw v wq - > -  This approximation imposes a 
strong form of myopia on S, by ignoring the option value of waiting one more 
period to gather more information. Clearly, imposing myopia induces an underes-
timate of the stopping value. However, not taking into account the option value 
also means that we are ignoring S’s subjective probability that J quits, and this 
serves to ameliorate the underestimate induced by myopia.  

We analyze J’s stopping decision using the one step look ahead (1sla) rule. That 
is, J compares the return from founding his own business today with waiting one 
more period to see if he is promoted and then forming a spinoff if he is not. The 
1sla correctly recommends continuation when continuation is optimal, but it may 
recommend stopping when continuation is in fact optimal. Thus, the 1sla may 
provide an overestimate of **.

t
q 3 

Under 1sla, J leaves the first time that 

 
ˆ ˆ

1 1

ˆ ˆ
( ) (1 ( ))

1 1 1

p

t t t t

w
k w kq qq q

m q m q b
b b b- -

æ öæ ö÷ç ÷ç ÷÷ç- + ³ + - + - +ç ÷÷ç ç ÷÷ç ÷ç- - -è øè ø
, (14) 

or, upon rearranging, when 

                                         
3 The 1sla rule is known to be optimal for all monotone stopping problems [e.g., Ferguson 
(2008, ch. 5)], However, J’s problem is not monotone. 
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q
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b
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m q
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- + -
£

- +
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The probability that J will be promoted, { }Pr ,p
t

v w wq > + -  is [from (12)] 
equal to the probability that the new signal, zt, satisfies the inequality, 

 
2 2

1
12

( )( )p
t z

t t

z

v w w t
z q

q

q s s
q

s s
-

-

+ - - +
³ + , (16) 

where J believes that 2ˆ( , ).
z

z N q s  The probability that inequality (15) is satis-
fied is therefore given by  

 
( )2 2

ˆ 11
1 2

ˆ( )( )
( ) 1

tt z
t t

zz

q tq q

q

q qq s s
m q

ss s
--

-

æ ö- ÷ç - + ÷ç ÷= - +ç ÷ç ÷ç ÷çè ø
F , (17) 

where pq v w w= + -  and ( )F   is the distribution function of a standard Normal 
random variable. Using (17) in (15), **

1t
q -  is the solution to 

 
( )**** 2 2

11

2

ˆ ˆ( )( ) (1 )
ˆ (1 )( )

p
tt z

p
zz

q t w k

w k w
q

q

q qq s s q b
ss s bq b b

--

æ ö- ÷ç - + - + -÷ç ÷+ =ç ÷ç ÷ç - + - -÷÷çè ø
F . (18) 

Note that the RHS of (18) lies in the unit interval for all agents with a meaning-
ful stopping problem [see eq. (5)]. The LHS must remain constant as t advances. 
It is therefore easy to see that  

 
** **

1 1 .
1

t t
d q

dt t

q q- --
=

-
 (19) 

Because **
1

,p
t

v w wq -- > -  (19) is positive for all 1.t >  It then follows **
1t

qq -   
as t  ¥  so, as claimed earlier, the boundaries for S and J converge. 

2.5 A Transformation to Gaussian Random Walks  

The sample paths of 
t

q  are realizations of a stochastic process with normally dis-
tributed increments in each period, having mean 2 2 2 1( )

t z
t tq qq s q s s -= +  and va-

riance 2 2 2 2 2 1

,
( ) .

t t z
t tq q qs s s s s -= +  In order to evaluate the comparative statics of 

stopping times, it is much easier to transform the problem so that the stochastic 
process is a Gaussian random walk. Hence, define  
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2 2

2

z
t t

zz

t tq

q

s s q
x q

ss s

æ ö+ ÷ç ÷ç= -÷ç ÷ç ÷çè ø
. (20) 

The variable xt is normal with zero mean and variance t , while the increments to 
xt are independent standard Normals. That is xt is a Gaussian random walk.  

The upper absorbing barrier for 
t

q  is q. The corresponding barrier for xt is ob-
tained by replacing 

t
q  in (20) with q. The transformed barrier for promotion is 

therefore 

 
2

 
( )S z

z

q q
B t t

q

s q
ss

æ ö- ÷ç ÷ç= - ÷ç ÷÷çè ø
. (21) 

To obtain the transformed barrier for spinoff formation, solve (20) for 
t

q , back-
date by one period and evaluate at **

1
,

t
q -  

 
2 ** 2

** 1
1 2 2

( 1)

( 1)
z t

t

z

t

t
q q

q

s s x s q
q

s s
-

-

+ -
=

+ -
. (22) 

Finally, substitute this expression into (18): 

 **
12

ˆˆ ( ) (1 )
ˆ (1 )( )

p
z

t p
z z

q q t w k

w k wq

s q q bq q
x

s ss bq b b-

æ ö- - + -- ÷ç ÷ç + - - =÷ç ÷ç ÷ç - + - -è ø
F . (23) 

The LHS of (23) must be constant over time. It then follows that 

 
**

1t

z

d q

dt

x q
s

- -
= - . (24) 

Hence, the transformed barrier for firm creation is linear. Because J makes deci-
sions at time t based on S’s belief at time t-1, the barrier for spinoff formation 
given in (23) is defined only for 1.t ³  Hence, we can write  

 

2 2

1

 ˆ( , , , , , , , ) ( 1), 1,2, 3,
( )

, 1

p
z

J
z

q
w w v k t t

B t

t

q

q
y q b s s

s

ì æ öï - ÷ï ç ÷ï ç- - =÷çï ÷÷çï è ø= íïïïï-¥ <ïî


, (25) 

where 
1

y  is the solution to (23) obtained after setting 1.t =   
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Figures 4 and 5 depict the resulting first passage problem. J is promoted if the 
Gaussian random walk, ,

t
x  hits the upper barrier without previously hitting the 

lower barrier. J forms a spinoff if 
t

x  hits the lower barrier without previously hit-
ting the upper barrier. Because the barriers have the same slope, one of these 
events must eventually happen. The figures illustrate two qualitatively distinct 
cases. In Figure 4, .qq <  S would not want to promote J if she knew J’s ability, 
but she may mistakenly do so if the signals she observes are sufficiently mislead-
ing. In this case, both barriers have a positive slope. In Figure 5, .qq >  S would 
immediately promote J if she knew his ability. In this case, the barriers have a 
negative slope. 

As a result of the transformation of our problem into a stopping problem for a 
Gaussian random walk, all parameter changes have effects manifested only 
through shifting either or both of the linear stopping boundaries. It is readily ap-
parent that anything that unambiguously shifts one or both barriers upwards 
makes spinoffs more likely and promotion less likely within any given finite time 
period. Similarly, anything that shifts one or both barrier downwards raises the 
probability of promotion while reducing the probability of a spinoff. Any parame-
ter change that moves the barriers in opposite directions has an ambiguous effect. 
To see why, suppose that both barriers shifted inward. Although it is more likely 
that any sample path for 

t
x hits the upper barrier, it may be harder for the sam-

ple path to hit the upper barrier without first hitting the lower barrier. Hence 
when both barriers shift inward, the probability that J is promoted may rise or 
fall.  

Table 1 summarizes how parameter changes move the two barriers. ( , )SB tq  
shifts downwards in response to increases in q, 2,qs  and w, and upwards in re-
sponse to increases in v and wp; ( , )JB tq  is decreasing in k, q, 2,qs and w, and in-
creasing in v and wp. The combined effects of the shifts in both barriers are sum-
marized in columns (3) and (4) of Table 1 and in Proposition 2.  

PROPOSITION 2. (1) The probability that J is promoted by any time t is: (i) in-
creasing in q, 2

qs , w, and k, and (ii) decreasing in v and b. (2) The proba-
bility that J forms a spinoff by any time t is: (i) decreasing in q, 2

qs , w, 
and k, and (ii) increasing in v and b. 
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Figure 4 

 

Figure 5 
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Table 1 

Increasing  
parameter 

Shift in 
( , )SB tq  

Shift in  
( , )JB tq  

Change in Probability by time t 

Promotion Spinoff 

 (1) (2) (3) (4) 

A. Unambiguous Effects 

q 
2

qs  

k 

w 

b 

v 

Down 

Down 

0 

Down 

0 

Up 

0* / Down** 

Down 

Down 

Down 

Up 

Up 

+ 

+ 

+ 

+ 

- 

- 

- 

- 

- 

- 

+ 

+ 

B. Unsigned Effects 

q̂  
2

z
s

 
wp 

0 

? 

Up 

? 

? 

? 

? 

? 

? 

? 

? 

? 

* For t = 1.** For t > 1.  

 

These effects of parameter changes on the promotion and spinoff probabilities are 
straightforward and, to avoid tedious repetition, we discuss just two results: 

(1) Uncertainty about ability. An increase in the prior variance of S’s belief, 2,qs  
makes S more responsive to new information, and hence more likely to promote S 
by any given time period. This increased likelihood of promotion induces J to be 
more tolerant of unfavorable beliefs and hence less likely to form a spinoff. In 
contrast, an increase in 2

z
s  has two countervailing effects on beliefs: on the one 

hand, the greater variability of signals increases the possibility of beliefs that di-
verge widely from the true value; on the other hand, knowing that the signals are 
noisier makes S less responsive to new information. These countervailing forces 
induce ambiguous impacts on both boundaries.   

 (2) Overconfidence. Let q̂ q-  measure J’s overconfidence about his ability. An 
increase in overconfidence can be brought about either by an increase in J’s sub-



 16 

jective evaluation of his ability or by a reduction in his true ability. A reduction 
in ability makes it more likely that S will develop a poor opinion of J, unambi-
guously making promotion less likely and spinoff formation more likely. An in-
crease in ,̂q  in contrast, has no effect on ( )SB t  and may shift ( )JB t  in either di-
rection. The ambiguous impact on the spinoff barrier arises because an increase 
in q̂  increases the desirability of both waiting for promotion and of spinoff for-
mation: for any given ability, a more confident J expects poor opinions to be cor-
rected quickly while at the same time he expects greater earnings from running 
his own company. As a result, the overall effect of increased overconfidence is 
unsigned, depending in large part on whether variations in overconfidence are 
driven by variations in perceptions or variations in actual ability.  

2.6 Continuous Time Density for First Passage  

It is common to analyze first passage problems by passing to continuous time. 
Doing so is of somewhat limited value here, because of the non-trivial lag 
between the time information is obtained and used by S and the information used 
byJ at the time he makes decisions. Nonetheless, it is instructive to derive an 
approximation to the stopping times as follows. The continuous time stochastic 
process that gives rise to the same distribution as xt at t=0, 1, 2, . . . , is a stan-
dard zero-drift Wiener process, ( ),tx  with initial condition (0) 0.x =  Because spi-
noff formation is not admitted at any time 1,t <  it is appropriate to disallow 
promotion during this same period.  

Under these assumptions, the density of first passage times can be written in 
closed form:  

THEOREM 1. Let (1) ,Sa B v= -  (1) ,Jb B v= -  and ( ) / .
z

qg q s= -  The density 
of first passage times is 

 ( )
(1)

(1)

0, 1

( ) 1 ( (1)) ( (1)) , 1

( | ) ( ), 1

S

J

S J

B

ab

B

t

f t B B t

f t v d v t

ìï <ïïïïïï= - F - F =ïïíïïïïï F >ïïïïî
ò

 

where ( )sF  is the distribution of a standard Normal random variable, and  
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n
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p
g
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- -
=

= - -
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The conditional density, ( | )
ab
f t v ,4 is plotted in Figure 6 for a case in which pro-

motion is ex post optimal from the perspective of S (i.e., where qq > ), and for 
three values of (1).x  The corresponding unconditional density, f(t), is in bold. 

( | )
ab
f t v  may be unimodal or bimodal. The bimodal case arises when (1)x  is close 
to the spinoff barrier at 1.t =  In the bimodal case, the first mode corresponds 
almost entirely to agents forming spinoffs in response to initially unfavorable be-
liefs held by S; the second mode consists almost entirely of agents being pro-
moted. The unimodal case emerges when (1)x  is further from the spinoff barrier 
at 1.t =  In this case, spinoffs are vanishingly rare and first passage events are 
dominated by promotions. When spinoffs are not ex post optimal for S, (i.e., 
where qq < ), it is again possible to obtain both unimodal and bimodal densities. 
In this second bimodal case, the first mode consists almost entirely of mistaken 
promotions, while the second mode consists almost entirely of spinoffs. 

 

Figure 6 

                                         
4 This was first derived by Darling and Siegert (1953:632-634). Dominé (1996) provides a dif-
ferent derivation and corrects a misprint in the original. 
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ab
f t v f t

(1) 3, (1) 1, 1.S JB B g= = - =
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(1) 1x =

(1) 0 .5x = -

( )f t
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Figure 7 

The unconditional density, ( ),f t  consists of a mass point at time 1,t =  and the-
reafter is obtained by taking expectations over all the conditional densities, 

( ).
ab
f t  Figure 7 illustrates for two values of J's ability, q, both of which would 
induce immediate promotion if it were known.5  An increase in J’s ability leads to 
a reduction in very early first passages, while the second mode appears earlier.  
The decline in very early first passage times is the result of a decline in the num-
ber of spinoffs, while the movement in the second mode arises because promo-
tions take place more quickly. 

3. Conclusions 

In this paper, we developed a simple dynamic model of promotion and spinoff 
formation in the presence of uncertainty about employee ability. A supervisor 
must learn over time about the employee’s aptitude for work at a more senior 
level, while the employee trades off the benefits of waiting for promotion against 
immediate departure to form a spinoff. By means of a number of approximations 
to the pair of interrelated optimal stopping problems that our model gives rise to, 

                                         
5 Increases in q shift the promotion barrier downward, and increase [decrease] the absolute 
value of the slope of both barriers when the slopes are initially negative [positive] 

0       1         2                 4                 6                 8             t

1.0

0.5

( )f t

1
: (1) 3, (1) 1, 1.S JB Bq g= = - =

2 1
(1) 2.5, (1) 1, 1.25: .S JB Bq gq = = - =>
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we are able to characterize the effects of a variety of parameter changes on the 
likelihood and timing of promotion and spinoff formation.  

In our model, the time of promotion is variable, the wage is fixed until promo-
tion, there is no dismissal, and entrepreneurship is the only outside option avail-
able to the employee. However, in most settings, employment at another firm is 
the most likely outside option; in many cases, especially where annual bonuses 
are paid, the wage adjusts in every period; in others, employees face up-or-out 
evaluations after a fixed period of tenure as a junior employee; in yet others, ear-
ly promotion is rare but early dismissal can be common.  Each of these deviations 
from the context we have modeled may have significant consequences for the 
rate, timing and comparative statics of both promotion and entrepreneurship. As 
a result, empirical work conducted in different settings can be expected to yield 
mixed results, as has been the case up to now.  
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